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Abstract. A new algorithm was developed to infer particle size distribution parameters from the Stratospheric Aerosol and

Gas Experiment II (SAGE II) and SAGE III on the International Space Station (SAGE III/ISS) extinction spectra using a

lookup table (LUT) approach. Here, the SAGE-based extinction ratios were matched to LUT values and, using these matches,

weighted statistics were calculated to infer the median particle size distribution values as well as quantify the uncertainty in

these estimates. This was carried out by solving for both single and bimodal lognormal distributions. The work presented5

herein falls under 2 general headings: 1. a theoretical study was carried out to determine the accuracy of this methodology;

2. the solution algorithm was applied to the SAGE II and SAGE III/ISS records with a brief case study analysis of the 2022

Hunga Tonga eruption.

1 Introduction

Stratospheric aerosols play a key role in determining the chemistry (Hofmann and Solomon, 1989; Fahey et al., 1993; Solomon10

et al., 1996) and radiative balance (Minnis et al., 1993; Ridley et al., 2014) of the atmosphere. Recent changes in the strato-

spheric aerosol loading (since 2000) have received significant attention in the scientific community (Hofmann et al., 2009;

Vernier et al., 2011; Ridley et al., 2014; Santer et al., 2014; Vernier et al., 2015; Solomon et al., 2011; Bourassa et al., 2012).

Many global climate models (GCMs) rely on observational data to represent stratospheric aerosols as these GCMs do not

have an interactive stratospheric aerosol scheme to model aerosol properties (Kremser et al., 2016). An accurate representa-15

tion of stratospheric aerosol properties including particle size distribution (PSD) is therefore important. While there are other

global stratospheric aerosol measurements available since the early 1980s, the Stratospheric Aerosol and Gas Experiment

(SAGE) series of satellites (McCormick et al., 1979) have provided a long-term (1979-2005), multi-wavelength, global record

of stratospheric aerosols. To date, data collected by the SAGE family of instruments have been instrumental in improving our

understanding of chemistry, radiative balance, and atmospheric dynamics (Lu et al., 2000; Fadnavis et al., 2013; Dube et al.,20

2020).

The second SAGE instrument (SAGE II) collected data between 1985 and 2005 and the current SAGE instrument on the

International Space Station (SAGE III/ISS) began collecting data in June 2017. The measurement method of all SAGE instru-
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ments has been occultation: peering through the Earth’s atmosphere to observe how the solar spectrum changes as a function

of altitude. This allows retrieval of altitude-dependent number densities for gas-phase species (e.g. O3, NO2, H2O) as well as25

a series of aerosol extinction coefficients (referred to, hereafter, as extinction), which have an expected precision on the order

of ≈5-10% (NASA, 2018). The extinction spectra (i.e., how extinction changes as a function of wavelength) contain limited

information regarding composition (Knepp et al., 2022) as well as the microphysical properties (e.g. particle size distributions)

for the aerosol responsible for attenuating the Sun’s light (von Savigny and Hoffmann, 2020; Wrana et al., 2021, 2023). These

microphysical properties play a key role in regulating atmospheric chemistry (Hofmann and Solomon, 1989; Fahey et al., 1993;30

Solomon et al., 1996) and radiative balance (Minnis et al., 1993; Ridley et al., 2014) in GCMs. Indeed, extinction spectra have

been used to infer aerosol surface area density (SAD) and effective radius (re) for the SAGE II instrument (Thomason et al.,

1997, 2008; Damadeo et al., 2013), which was released as a standard product for that dataset. However, despite the high level

of precision in the aerosol extinction product, the utility of the SAD product was predominantly limited to deriving SAD in

the wake of volcanic events since, during background conditions, the uncertainty of the SAD product was potentially >200%35

(Thomason et al., 2008). While SAD and re were released as part of the SAGE II product, PSD parameters (e.g., mode radius

and distribution width) have never been part of the standard SAGE product. To date, external groups have been responsible for

developing their own algorithms and methodologies for extracting this information from the extinction spectra (e.g. Wang et al.,

1989a, b, 1996; Yue, 2000; Bingen et al., 2004a; Wrana et al., 2021, 2023). Such inferences are challenging and inherently

unstable due to the ill-posedness of the problem (Fussen et al., 2001). One method to stabilize the solution space is to apply40

a smoothness condition that forces the PSD parameters to vary smoothly with altitude (Bingen et al., 2004a, b, 2006, 2017).

While this methodology tends to produce reasonable values, it has not been evaluated to determine its accuracy or precision.

Indeed, validating these products by comparison to in situ observations (e.g. from aircraft field campaigns or balloon flights)

would be challenging. The challenge in performing “traditional” validation exercises that compare these derived products with

measurement data comes primarily from differing sampling volumes. As an occultation measurement, the SAGE instrument45

peers through hundreds, sometimes thousands, of kilometers of atmosphere as the instrument scans across the solar disk.

Therefore, the question becomes: how representative are the in situ measurements of the total sampling volume of the SAGE

instrument. Generally speaking, such intercomparisons often gloss over this by assuming that the zonal variability of the ob-

served species, over short time scales, is sufficiently low to allow intercomparison. While this has proven effective in validating

ozone (Wang et al., 2020), similar treatment with aerosol has yet to consistently yield agreement better that 35% (Deshler et al.,50

2003) due, in part, to the differing sampling volumes and atmospheric heterogeneity.

An alternative to validating the inferred PSD parameters using empirical data is to gauge the potential accuracy of these

methods by working in the other direction. By starting with Mie theory, where the microphysical properties are strictly defined,

we can create lookup tables of extinction coefficients at SAGE wavelengths for varying combinations of PSD parameters. These

lookup tables can then be used to identify all PSD parameters that yield matches to a series of SAGE-observed extinction co-55

efficients (within the precision of the measurement). This will effectively provide the solution space of PSD and microphysical

properties for SAGE extinction products. Ultimately, this results in a collection of PSD parameters for each SAGE profile, with
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a quantified error for the PSD estimate. This methodology is described below and is applied to the SAGE II and SAGE III/ISS

record. The influence of common assumptions are discussed throughout the manuscript.

2 Instruments and data60

The SAGE family instruments have been described previously (Mauldin et al., 1985; Cisewski et al., 2014). Briefly, SAGE

instruments use the solar occultation method to measure the solar attenuation, as a function of wavelength, that occurs through-

out the atmosphere. Standard products include the number density of gas-phase species (e.g., O3, NO2, and H2O) as well as

aerosol extinction coefficients (385, 450, 525, 1020 nm for SAGE II and 384, 448, 520, 601, 676, 755, 869, 1021, 1543 nm

for SAGE III/ISS; referenced as kλ). Herein, the SAGE II v7.0 and SAGE III/ISS v5.3 products were used. All analysis was65

limited to altitudes between the tropopause and 30 km and the 601 nm and 676 nm channels were excluded from the analysis

due to ozone interference within those channels (Wang et al., 2020).

2.1 Computing hardware and code

The analysis code was written in Python and relied heavily on the PyTorch (v1.12.1) library. Because of the nature of the lookup

table (LUT) methodology and the data volume extensive parallelization was required to run the code within a reasonable time.70

This requirement was most pronounced during the bimodal analysis. Therefore, all of the solution routines as well as the

statistical calculations were carried out on an NVIDIA A100 GPU with 80 GB of memory. While the 80 GB of memory within

the A100 was required for the bimodal analysis, we note that all of the single-mode solution code could be run on a more

modest GPU. Indeed, much of the development work was carried out on a Quadro RTX 3000.

3 Methodology75

3.1 Lookup Table Construction

In this section we present a brief overview of the theoretical basis for constructing the LUTs as well as justification for the PSD

boundaries used in generating these tables.

The processing time of this algorithm is directly related to the size of the LUTs. Further, the resolution and extent of the PSD

parameters used to generate the LUTs directly controls the accuracy of the inferred PSD parameters. This creates a dilemma:80

do we sacrifice accuracy for improved run time or improve the accuracy at the cost of run time? Therefore, after providing a

general overview of the LUT creation we present brief justifications for the parameters and resolutions used herein.

Extinction coefficients at each SAGE wavelength (kλ) were calculated using Mie theory under the assumption that all

particles are spherical and the distribution is single-mode lognormal. This was done for sulfuric acid aerosol at different weight

percents (65%, 70%, 75%, and 80% sulfuric acid by weight) using refractive indices reported by Palmer and Williams (1975),85

smoke composed of black carbon (BC) using refractive indices reported by Sumlin et al. (2018), and smoke composed of brown

carbon (BrC) using refractive indices reported by Bergstrom et al. (2002). These refractive indices are presented in Table 1.
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The PSD LUTs were generated by first calculating single particle extinction efficiencies (Qext(λ,r) where λ was an array of

SAGE wavelengths and r was an array of particle radii (here, r = [10,11,12, . . . ,9999,10000] nm); for derivation of Qext(λ,r)

see Kerker (1969); Hansen and Travis (1974); Bohren and Huffman (1983). The extinction coefficients were then calculated90

by multiplying Qext with a series of single-mode lognormal distributions (P(rm,σ)) followed by integration (Eq. 1). The

lognormal distribution is described in Eq. 2 where σ is the geometric standard deviation (sometimes written σg in the aerosol

literature) and rm is the mode radius (the median radius of a lognormal distribution is commonly referred to as mode radius in

aerosol literature; we adopt this convention here). Lognormal distributions were calculated for mode radii (rm) that extended

from 10 nm through 1500 nm (1 nm resolution) and distribution widths that ranged from 1.01 through 2.0 with a resolution of95

0.001. This resulted in three-dimensional lookup tables of extinction coefficients (k(λ,rm,σ)) as a function of incident light

wavelength, mode radius,and distribution width.

k(λ,rm,σ) =

rmax∫

rmin

πr2P(rm,σ)Qext(λ,r)dr (1)

P(rm,σ) =
1√

2πln(σ)r
exp

[
(ln(r)− ln(rm))2

−2ln(σ)2

]
(2)

λ (nm) Sulfuric Acid (65%) Sulfuric Acid (70%) Sulfuric Acid (75%) Sulfuric Acid (80%) BC BrC

384 1.436 + 0i 1.442 + 0i 1.448 + 0i 1.454 + 0i 1.75 + 0.50i 1.55 + 1.0E-2i

448 1.421 + 0i 1.427 + 0i 1.433 + 0i 1.439 + 0i 1.75 + 0.50i 1.55 + 4.4E-3i

520 1.418 + 0i 1.425 + 0i 1.431 + 0i 1.436 + 0i 1.75 + 0.50i 1.55 + 2.6E-3i

755 1.413 + 8.66E-8i 1.420 + 8.12E-8i 1.427 + 7.59E-8i 1.431 + 5.55E-8i 1.75 + 0.65i 1.55 + 2.0E-3i

869 1.412 + 2.01E-7i 1.418 + 1.96E-7i 1.425 + 1.92E-7i 1.428 + 1.74E-7i 1.75 + 0.65i 1.55 + 2.0E-3i

1021 1.408 + 1.55E-6i 1.415 + 1.54E-6i 1.421 + 1.52E-6i 1.424 + 1.44E-6i 1.75 + 0.75i 1.55 + 2.0E-3i

1543 1.391 + 1.54E-4i 1.397 + 1.48E-4i 1.403 + 1.42E-4i 1.405 + 1.33E-4i 1.75 + 0.90i 1.55 + 2.0E-3i

Table 1. Complex refractive indices for sulfuric acid and smoke used in the Mie calculations. The smoke refractive index values were based

on data reported in Bergstrom et al. (2002) for BC and Sumlin et al. (2018) for BrC. Sulfuric acid refractive index values are from Palmer

and Williams (1975).

Because the resolution and the range of particle radii and distribution widths used to create extinction tables plays a critical100

role in defining the accuracy of the LUTs, and the corresponding PSD parameters inferred from these LUTs, we provide a brief

justification for the resolution and range of rm and σ below.

3.1.1 Justification for extent of particle radii

The extent of particle radii used to create the extinction efficiency table as well as set the integration boundaries (rmin and rmax

in Eq. (1)) was based on the influence large particles can have, despite their rarity, on the overall extinction. As an example,105
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3 lognormal distributions (rm=100 nm, σ =[1.2, 1.5, 1.8]) are presented in Fig. 1. Here, it is observed that the distribution is

Gaussian in log space and that as the radius gets farther from rm the corresponding probability decreases rapidly. What is not

obvious from Fig. 1 is that larger particles, despite having a probability equal to the smaller particles, have a disproportionate

influence on extinction. The reason behind this disparity is the competing extinction efficiencies as shown in Fig. 2 wherein it

is observed that large particles (e.g., 1 µm) are≈3 orders of magnitude more efficient at attenuating light than a 70 nm particle.110

Logically, 1 can infer that one large particle can attenuate light as efficiently as 100 – 1000 smaller particles; therefore, large

particles, however rare, cannot be ignored when building the LUTs.

Figure 1. Example lognormal distributions for 3 distribution widths (σ =[1.2, 1.5, 1.8]) for a mode radius of 100 nm.

Figure 2. Extinction efficiencies as a function of particle size for select SAGE aerosol wavelengths.

As a further demonstration of the importance of large particles we carried out a series of simulations to demonstrate the

impact that changing the upper integration boundary (rmax) in Eq. 1 has on k(λ). Here, Qext was calculated for all radii

between 10 nm and 10 µm (1 nm resolution) followed by the integration of Eq. 1 using different upper integration boundaries115

(k(λ,rmax)). This model was carried out using 3 different mode radii (rm=[70, 150, 500] nm) and a single distribution width

(σ =1.5). Extinction coefficients were calculated as a function of the upper integration boundary of Eq. 1 (k(λ,rmax)) and

we calculated the percent difference between these values and the value of k(λ) when rmax =10 µm (i.e., k(λ,10µm)). The

results of this model are presented in Fig. 3 wherein it is observed that if the desired accuracy for k(λ) is 1% for all channels
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then rmax must be > 525 nm when rm=70 nm, > 1µm for rm=150 nm, and >2.4 µm when rm=500 nm). While changes in σ120

and/or rm will modulate the limit of rmax required to achieve 1% accuracy the general observation remains the same: choosing

a value of rmax that is too small will invariably bias k(λ) as well as the inferred PSD values. Therefore, to obviate the impact

of this bias we set rmax to 10 µm.

Figure 3. Impact of upper integration radius boundary on k. Data were referenced to k(λ,10µm). The distribution width used in this figure

was 1.5. Solid lines, dashed lines, and dot-dashed lines correspond to mode radii of 70 nm, 150 nm, and 500 nm, respectively.

3.1.2 Justification for resolution of distribution widths

The influence that the resolution of the distribution width (∆σ) had on k(λ) was evaluated as a function of rm and ∆σ as shown125

in Fig. 4. Here, it was observed that if σ =1.5 (Fig. 4, panel b), rm=75 nm (i.e., background conditions), and the resolution of

the LUT (∆σ) is 0.01 then the corresponding bias in k(λ) is ≈5%. It was observed that σ resolution has less impact as rm and

σ increased. However, in order to mitigate the bias introduced by ∆σ we used a resolution of ∆σ =1E-3 in creating the LUTs.

This resolution introduces a bias in k(λ) on the order of 1% under background conditions, which we treat as negligible in the

subsequent analysis.130

Justification for the selection of the range of σ cannot be explained with a single figure. Rather, the range of σ was defined

based on the results of a series of sensitivity tests that are described more fully in Section 4. Briefly, part of the sensitivity tests

involved varying the range of PSD parameters used in LUT creation (see Table 2). It was determined that extending the LUT σ

and rm ranges to 2.0 and 1500 nm, respectively, yielded the best performing solutions when compared to theoretical data (see

Sec. 4 for an expanded discussion of the corresponding sensitivity study).135

6

https://doi.org/10.5194/amt-2023-207
Preprint. Discussion started: 4 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 4. Influence of distribution width resolution on the corresponding extinction coefficient error. The wavelength used in this simulation

was 520 nm. The horizontal dashed line represents the typical background particle size (75 nm).

Parameter Setting # σ Range rm Range (nm)

0 1.01 – 2.0 10 – 500

1 1.01 – 2.0 10 – 1500

2 1.01 – 5.0 10 – 500

3 1.01 – 5.0 10 – 1500

Table 2. Range of PSD parameters used in determining the optimal range of σ and rm.

3.2 Inferring PSD parameters

3.2.1 Historical background

The necessity of using extinction ratios, as opposed to extinction coefficients, for eliminating the influence of number density

(N) and inferring aerosol physical parameters has been discussed previously (e.g., Thomason et al., 1997; Bingen et al., 2006;

Wrana et al., 2021). Therefore, the method of determining the atmospheric PSD parameters is straight forward and requires140

only searching through the LUTs to identify all PSD parameters that yield extinction ratios that match extinction ratios from

the SAGE records to within the bounds of the reported uncertainty. Indeed, if measurement error was negligible then the PSD

parameters could be inferred to a high degree of accuracy. However, this level of precision is never achieved outside possibly

laboratory settings and making such simplifying assumptions is fundamentally flawed. Indeed, the fundamental limitation

of inferring PSD parameters from instruments like SAGE is the under-constrained nature of the problem, which results in a145

plethora of potential solutions.

As an illustration of the problem, LUT data were used to plot 2 extinction ratios against each other (Fig. 5, panel a).

Nominal extinction ratios and their corresponding uncertainties (0.3±15%, 1.2±10%) were included as a representative SAGE

data point (the red dot in Fig. 5). All LUT data that fall within the SAGE error limits are valid solutions (herein we refer to
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these values as “within the solution space”). Since the rm and σ values for each LUT value is known, we can identify all rm and150

σ combinations that fall within the solution space. The range and relative frequency of these values are plotted as normalized

probability density functions in panels (b) and (c) of Fig. 5. Here, it is observed that, within the bounds of uncertainty, the range

of rm was [160, 360] nm and the range of σ was [1.25, 1.8). While adding more extinction ratio combinations and decreasing

the measurement uncertainty decreases the extent of the solution space, this simple example demonstrates the problem inherent

in inferring PSD parameters from SAGE data: multiple solutions. Therefore, the breadth of the solution space demands the155

question be answered: which PSD values are either correct, most likely, or most representative of reality?

Figure 5. Visualization of the variability of rm and σ within the error bars (panels b and c) and along the edges of the error limits (panels d

and e). The errors were fixed at 15% and 10% along the x and y axes, respectively. The red dashed lines in (a) represent the solution space

for the nominal SAGE value. The vertical dashed lines in (b–e) represent the target rm and σ values that correspond to the red dot in (a).

A previous method published by Wrana et al. (2021) answered this by using the PSD values that fell closest to the SAGE

ratios as the solution (i.e., the closest match). They went on to estimate the error in these PSD values by sampling at 8 locations

along the error boundaries, as defined by the propagated errors, and calculating the mean difference between these peripheral

PSD values and those that correspond to the closest match. The challenge in this method is the highly variable nature of the160

PSD values that lay along these boundaries as shown in Fig. 5 (d, e). Therefore, the error estimate is highly dependent on where

samples are drawn along the error boundaries.

The key points of Fig. 5 are that the central point is not necessarily a good estimate of the PSD parameters, that there is a

non-negligible amount of variability in the PSD parameters within the overall solutions space, and that accurate error estimates

cannot be calculated by sampling along the edge of the solution space. The method presented herein attempts to overcome165

these limitations.
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3.2.2 Solutions from SAGE data

The overall flow of the solution algorithm is depicted schematically in Fig. 6. In short, extinction ratios were calculated,

and uncertainties propagated, using extinction coefficients from SAGE data (for a detailed discussion of wavelength selection

see Sec. 4). Corresponding extinction ratios were calculated using the LUT data. Similar to the example provided in Fig.170

5 (a), the SAGE ratios were then used to find all of the LUT ratios that fell within the propagated uncertainty as well as the

corresponding PSD parameters (i.e., rm and σ). While Fig. 5 (a) only shows 2 dimensions (i.e., 1 dimension per extinction ratio),

the dimensionality of that figure increases as the number of extinction ratios increase, leading to a simultaneous solution in all

dimensions. As discussed above, it is important to recall that finding the closest match in extinction ratios and extracting the

corresponding PSD parameters is not sufficient because all LUT ratios that fall within the propagated measurement uncertainty175

are actual matches to the SAGE ratios. Therefore, a method for estimating the PSD values, given the range of values within

the solution space, had to be developed. Here, we used all of the PSD values within the solution space to calculate weighted

statistics (e.g., mean, median, percentiles, etc.) of the PSD parameters in an attempt to provide a statistical representation of

the solution space and thereby provide a better quantification of the uncertainty in the PSD estimates.

The weights used in calculating the weighted statistics were calculated using the probability density function of a multivariate180

normal distribution as described by Eq. (3) where x is the array of LUT extinction ratios that fell within the solution space, µ

is the array of SAGE extinction ratios, Σ is the covariance matrix, and n is the number of dimensions (i.e., combinations of

extinction ratios) of the system. The diagonal terms in Σ were composed of the propagated uncertainties from the SAGE data.

The construction of Σ for Eq. (3) requires additional explanation. The covariance matrix is composed of both variances (i.e.,

the diagonal terms) and covariances (i.e., the off-diagonal terms that represent the degree of correlation between channels).185

While it is known that the variances in the SAGE extinction products are correlated, as can be can be demonstrated by calculat-

ing the coefficient of correlation between the reported errors, quantification of the covariance is not currently possible. While

we cannot quantify the covariance terms we do know that the covariance will be between zero and
√
∥u∥∥v∥ (here, u & v

represent the uncertainties in each channel) per the Cauchy-Schwartz inequality as shown in Eq. (4). While inclusion of the

covariance terms did not significantly change the results, a good-faith estimate of covariance was attempted by setting them to190

mid-range values of 1
2 ·

√
∥u∥∥v∥.

p(x,µ,Σ) =
exp

(
− 1

2 (x−µ)TΣ−1(x−µ)
)

√
(2π)n det(Σ)

(3)

|⟨u,v⟩| ≤ ∥u∥∥v∥ (4)
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Figure 6. Chart describing the overall algorithm flow.
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4 Sensitivity Tests

4.1 Composition is correctly assumed195

Before applying this method to the SAGE records we sought to evaluate the accuracy and consistency of this method for

inferring PSD values. This was achieved, from a theoretical perspective, by using LUT data and involved 4 overall steps:

1. Select extinction coefficients from the LUT. These coefficients, which have known PSD parameters, act as the pseudo-

SAGE data.

2. Impose a nominal uncertainty on the pseudo-SAGE extinction coefficients, calculate the extinction ratios and propagate200

the errors. Here, the errors were held constant across all wavelengths and the evaluation was repeated for errors that

ranged from 1% through 50%.

3. Run the pseudo-SAGE extinction ratios through the solution algorithm to calculate the inferred PSD statistics. Here, the

algorithm uses the same LUT from which the pseudo-SAGE extinction coefficients were pulled in step 1.

4. The inferred PSD parameters were compared to the input values to determine how well to 2 matched.205

The overall flow of the algorithm is depicted schematically in Fig. 6. This evaluation was repeated for a series of extinction

ratio combinations (see Table 3) and LUT boundary conditions (Table 2) to determine which combination yielded the most

accurate results.

Based on the results of this evaluation we determined that condition #5 (Table 3) and particle parameter setting #1 (Table

2) yielded the best overall performance. This is not surprising as this condition used all of the available channels, which takes210

advantage of all of the information content available in the SAGE data. The results of this simulation are seen in Fig. 7 where

the inferred-to-target ratios were plotted for 3 different error values (i.e., 50%, 20%, and 5% error) as a function of the inferred

PSD value. The red horizontal lines in Fig. 7 indicate median values, the boxes extend from P25 to P75 and the whiskers indicate

P5 and P95. Here, we chose to plot the inferred-to-target ratio as a function of the inferred PSD parameter because this is most

applicable to real-world use cases (i.e., where the “real”, or target value is unknown). For example, if the reported errors of215

the extinction coefficients were all within 5% and the inferred mode radius was 100 nm then, per Fig. 7 (c), we know that on

median the inferred mode radius is ≈5% too high, and that 90% of the time the inferred value is within ±15% of the target

value.

While the performance of condition #5 was optimal it can significantly reduce the number of SAGE extinction spectra that

yield a viable PSD inference (see Fig. 8 panels (a) and (d)). This is caused by 2 related issues: 1. shorter-wavelength channels220

attenuate higher in the atmosphere and result in extinction ratios that fall outside the LUTs’ range, 2. using so many channels

increased the chance of having a negative extinction coefficient (Kovilakam et al., 2023) or an otherwise invalid value (e.g.,

set to “fill” values). A similar combination of extinction ratios that excluded the 384 nm channel was evaluated (condition

#6). While the performance of condition #6 was comparable to condition #5, there was a noticeable decrease in accuracy (not

shown). Further, excluding the 384 nm channel alone did not significantly increase the data volume as shown in Fig. 8. While225
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Figure 7. Results of the sensitivity study for condition #5 (Table 3) and particle parameter setting #1 (Table 2) at 3 different error values.

The red lines indicate median values, the boxes extend from P25 through P75, and the whiskers represent P5 and P95.
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Condition #
Numerator

Wavelengths (nm)

Denominator

Wavelength

(nm)

0 520 1021

1 448, 520 1021

2 448, 520, 755 1021

3 448, 520, 755, 869 1021

4 384, 448, 520, 755, 869 1021

5 384, 448, 520, 755, 869, 1543 1021

6 448, 520, 755, 869, 1543 1021

7 520 1543

8 448, 520 1543

9 448, 520, 755 1543

10 448, 520, 755, 869 1543

11 448, 520, 755, 869, 1021 1543

12 520, 755, 869, 1021 1543

13 384, 448, 520, 755, 869 1543

14 384, 448, 520, 755, 869, 1021 1543

15* 448, 1543 755

Table 3. Condition definitions and wavelength assignments for extinction coefficient ratios used in the current study. The asterisk indicates

the wavelength combination used in Wrana et al. (2021).

excluding the 384 nm channel yielded more solutions at lower altitudes, the failure rate remained >30% at mid-latitudes (Fig.

8 panels (b) and (e)). As a final test we evaluated the performance of a condition definition that used only 3 channels (#15,

panels (c) and (f)). This wavelength combination resulted in valid PSD estimates for more than 90% of its data at all altitudes

and latitudes. Figure 8 also shows the performance of these 3 conditions when only the highest-quality SAGE data were used

(i.e., when the reported error was ≤20%; panels d–f), which did not significantly change the data throughput.230

The wavelength combinations used by Wrana et al. (2021) (condition #15 in Table 3) had the third-best overall performance

(see Fig. 9) and have the added benefit of only relying on 3 extinction channels, which resulted in a major improvement in data

retention (see Fig. 8 panels c and f). While this condition lacked the overall accuracy of conditions 5 & 6, we determined that

its performance was acceptable for use as an alternate within this method. Therefore, the results of this evaluation indicate that

if we work strictly within the confines of theory then condition #5 is the optimal choice. However, application of this method235

to reality (i.e., where we must account for measurement uncertainty, the possibility of saturating channels, etc.) we conclude

that condition #15 is the optimal choice. This puts us on the horns of a dilemma where we are forced to choose our concession:

do we sacrifice latitude/altitude coverage for improved accuracy (condition #5) or sacrifice accuracy for improved coverage
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Figure 8. Zonal representation of the fraction of SAGE data that yielded PSD estimates. Panels d-f display the statistic when data with errors

>20% were removed.

(condition #15)? While further discussion on the resolution of this dilemma is outside the scope of this section we will state

that a hybrid model that involves a combination of conditions #5, #6, and #15 were used in the application to the SAGE data240

and the reader is directed to Section 6 for further discussion.

In summary, the general observation of Figs. 7 & 9 is that the accuracy of the PSD solutions became better as the measure-

ment uncertainty decreased and as the input PSD parameters become more like an enhanced event (e.g., larger rm, enhanced

SAD, etc.). While this is encouraging, it must be recognized that this simulation is only theoretical in nature and that the

more challenging aspects of real-world aerosol compositions and PSD parameters have been neglected. To help address these245

limitations we evaluated the impact of assuming a wrong composition below.

4.2 Impact of assuming a wrong sulfuric acid content

To this point we have neglected to account for varying aerosol compositions and how making the incorrect assumption about

the composition may influence the inferred PSD parameters. In this section we present the results of a simulation wherein we

evaluated the impact of assuming the wrong weight percent H2SO4. Because H2SO4 is typically assumed to be 75% we use250

that as the point of reference.
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Figure 9. Same as Fig. 7, but for condition #15.
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Figure 10 demonstrates the overall impact of assuming an incorrect weight percent of H2SO4 in the PSD algorithm. Here,

the algorithm searched through the 75% H2SO4 LUT to find all extinction ratios within the solution space whereas the pseudo-

SAGE extinction ratios were pulled from the 65%, 70%, and 80% H2SO4 LUTS (see Fig. 6 for workflow and Table 1 for

refractive indices).255

The y-axes in Fig. 10 represent the ratio of the inferred PSD parameter when the LUTs were mismatched to the inferred

PSD parameters when the LUTs were correctly matched (i.e., both the extinction ratio and algorithm LUTs were 75% H2SO4).

What this tells us is how much an incorrect assumption about the H2SO4 weight percent changes the inferred PSD parameters

as compared to Figs. 7 & 9 (i.e., how much worse are these estimates as compared to getting the composition correct). The

extinction coefficient errors used to create Fig. 10 were set to 20%. Indeed, the spread in the inferred PSD parameters narrowed260

with decreasing error and the 20% error solutions are presented as a representative example.

The general observation from Fig. 10 is that making incorrect assumptions about the aerosols’ H2SO4 content has minimal

impact on the inferred distribution widths (all were within≈1–2% as compared to Fig. 7) and the inferred rm was most impacted

(within ±5%). These deviations were compounded in the inferred SAD and volume density (VD) products, which deviated by

<8%.265

We note that overall the influence of incorrect H2SO4 assumptions was consistent across all condition definitions (Table 3)

with only minor variations. We conclude that incorrect assumptions about the H2SO4 content had minor impact on the accuracy

of the inferred PSD parameters (generally within ±5%). Since the H2SO4 content of atmospheric aerosols is, ultimately,

unknown we note that this situations adds an unknown element to the analysis.

4.3 Impact of assuming a smoke-free atmosphere when smoke is present270

The performance of the PSD algorithm was evaluated to determine its accuracy in estimating PSD parameters when the atmo-

sphere is assumed to consist solely of 75% H2SO4 when it really has smoke. As stated above, smoke is challenging to model

because of the ambiguity in its composition and physical properties (e.g., refractive index). While recent work indicates that

stratospheric smoke may be consistent in composition and size distribution (Thomason and Knepp, 2023) there have been no

in situ observations to determine the composition and physical properties of stratospheric smoke. Therefore, we conducted275

the following simulation under the assumption that most smoke is composed of brown carbon (BrC) with little contribution

from black carbon (BC) and used the refractive indices of Sumlin et al. (2018) and Bergstrom et al. (2002) for BrC and BC,

respectively (refractive index values in Table 1).

This simulation followed the same methodology as in Sec. 4.2, but used the smoke LUTs as the extinction ratio targets (see

flow in Fig. 6). Here, we assumed that 90% of the particles were composed of 75% H2SO4 with rm=75 nm, and σ=1.5 (i.e.,280

background conditions) and that 10% of the particles were composed of smoke of various compositions. The labels in Fig. 11

indicate the relative breakdown of the smoke particles between BrC and BC.

While σ was consistently high the deviation in rm was minimized when the inferred rm was between 100 and 400 nm. This

falls in an ideal location as previous studies have shown that pyroCb-related smoke particles are typically between 125 and

250 nm (Moore et al., 2021; Katich et al., 2023). While these studies were conducted in the troposphere (Katich et al. (2023)285
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Figure 10. Visualization of the impact of getting the weight percent H2SO4 incorrect. The presented data came from condition #5 with an

imposed extinction coefficient error of ±20%.
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sampled near the Arctic lower stratosphere) we take them to be representative of stratospheric values for this study, though we

recognize that additional in situ sampling would be highly beneficial. Finally, we note that both SAD and VD were significantly

underestimated under reasonable values (e.g. when SAD ≥0.1 µm2 cm-3), but these discrepancies effectively canceled out in

the calculation of re. Therefore, we must provide a cautionary note when using data that may be contaminated by the presence

of smoke.290

Figure 11. Visualization of the impact of assuming a smoke-free atmosphere when smoke is present. The presented data came from condition

#15 with an assumed extinction coefficient error of ±20%.
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4.4 Influence of a second mode: an OPC case study

Expanding the solution space from single-mode to bimodal distributions greatly expands the number of possible solutions

(see Section 5 for additional discussion) and expands the number of variables to solve for. This makes visualization and

interpretation of the results challenging. Therefore, we limit this section to a higher-level demonstration that provides the

reader with a general understanding of the implications of incorrectly assuming single-mode distributions. To aid in this we295

used the University of Wyoming’s Optical Particle Counter (UWY OPC) record, which provides bimodal PSD parameters at 0.5

km resolution (Deshler, 2023). The OPC PSD parameters were used to calculate extinction coefficients at SAGE wavelengths

(see Eq. (1)) under 2 conditions: 1. using only the first mode, 2. using both modes. These OPC-based extinction coefficients

were used to create pseudo-SAGE extinction ratios, which were then fed into the PSD solution algorithm, which still used a

single-mode lognormal distribution LUT. The uncertainty of the extinction coefficients was fixed to a highly conservative value300

of 5% (Deshler et al., 2003). Herein the aerosol composition was set to 75% H2SO4.

4.4.1 Only using the first OPC mode to calculate extinction

The OPC-based extinction coefficients were calculated using only the first mode in the OPC data followed by running these ex-

tinction coefficients through the PSD inference algorithm. This effectively tests the algorithm’s performance when the number

of modes in the atmospheric aerosol distribution matches the number of modes in the LUT.305

Figure 12 (panels a–f) demonstrates how the inferred PSD parameters and microphysical properties compared to those re-

ported in the OPC record. Here, the inferred values were divided by the reported OPC values for comparison and the shaded

region represents the median ± 1.4826 * the median absolute deviation (MAD*). The median and MAD statistics are sta-

tistically robust alternatives to the mean and standard deviation and are less susceptible to impact from outliers (Leys et al.,

2013). Further, when MAD is multiplied by 1.4826 it is roughly equivalent to 1 standard deviation (Leys et al., 2013). It was310

observed that the inferred rm was consistently overestimated by up to ≈30% (on median), though the agreement became better

towards the middle stratosphere (20–25 km). The distribution width provided the best agreement, while the SAD and VD were

consistently underestimated by ≈25%. This resulted in an underestimation of effective radius (re) on the order of ≈10–20%.

These results are consistent with the initial single-mode evaluation (Figs. 7 and 9). Therefore, we conclude that if the atmo-

sphere’s aerosol is distributed within a single-mode lognormal distribution and the LUT is likewise single-mode lognormal315

then the performance remained consistent with the previous theoretical evaluations. The remaining question is: how does the

performance change if the atmosphere’s aerosol distribution is bimodal?

4.4.2 Using both OPC modes to calculate extinction

The analysis was repeated using both OPC modes to calculate the pseudo-SAGE extinction coefficients that were fed into the

PSD inference algorithm. We reiterate that the solution algorithm is still searching for solutions within single-mode lognormal320

LUTs. This tests the viability of inferring representative single mode PSD parameters when the atmosphere has aerosol that

has a bimodal distribution.
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Figure 12. Solution profiles of the inferred PSD parameters and microphysical properties referenced to the reported OPC value. The solid

lines represent the median ratio and the shaded regions represent the median±MAD*. The uncertainty imposed on the extinction coefficients

was fixed at 5%.
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The results of this analysis are seen in panels g–l of Fig. 12 wherein a stark change from the results in panels a–f is observed.

Here, the inferred rm, σ, and N were referenced to the first mode values reported in the OPC record. It was observed that

addition of the second mode significantly increased the inferred rm, σ, and VD. Overall, this also increased re, especially at low325

altitudes, though the middle-stratosphere performance remained comparable to that observed in panel (e). Finally, addition of

the second mode reduced the inferred number density by up to a factor of 10 at low altitude (panels f, l).

While a change in performance was not unexpected, the degree of influence the second mode had on the inferred PSD

parameters may not be intuitive, especially when one considers the relative paucity of larger-mode particles (OPC number

density ratio profiles are shown in panel (d) of Fig. 13 for reference; see also additional discussion below). To understand this330

one must recall the disproportionate influence large particles have on the overall extinction as shown in Fig. 2. This is further

illustrated in Fig. 13 where panel (a) shows the second mode’s contribution to the overall extinction as a function of the second

mode’s rm (labeled r2) for 3 different wavelengths (385, 520, 1020 nm) and 2 number density ratios (N2:N1 = 1E-2 and 1E-3).

Panel (b) of Fig. 13 shows the second mode’s contribution to overall extinction as a function of number density ratios for the

same 3 wavelengths with the following PSD parameters: r1=75 nm, σ1=1.45, r2=310 nm, σ1=1.05 (median values from the335

OPC record). Panels (c) and (d) aid in interpreting panels (a) and (b) by presenting quartile profiles for r2 and the number

density ratio as calculated from the OPC record.

Figure 13. Fraction of the total extinction that comes from the larger mode. Panel (a) plots this fraction as a function of the second mode

radius (r2) for 3 wavelengths and 2 different number density ratios. Panel (b) plots this fraction as a function of number ratio for 3 wavelengths

using constant bimodal PSD parameters (text inset within the figure). Panels (c) and (d) present the quartile profiles, from the OPC record,

for the r2 and number density ratio, respectively.

What is first observed in Fig. 13 (a) is a rapid increase in the second mode’s contribution to the overall extinction as particle

size increases, particularly at the longer wavelengths. However, the shorter wavelengths show an interesting behavior in that
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their extinction increased rapidly followed by a flattening and slight decrease in extinction, which is subsequently followed340

by another rapid increase. Indeed, the longer wavelength data demonstrate this same behavior, though not on the scale of this

figure. The cause of this flattening is a combination of the extinction efficiency for the specified particle as well as the width

of the lognormal distribution that was applied prior to integration. For example, if rm falls near the peak in the efficiency curve

and the distribution width is sufficiently narrow then the integrated efficiency (or extinction) will be effectively constant as rm

changes. Therefore, where this flattening occurs on the x-axis of Fig. 13 (a) depends not only on σ but also on the wavelength345

and how the number densities are allocated between the 2 modes.

This figure also demonstrates that at middle stratospheric conditions (20-25 km) where r2≈350 nm (panel (c)) and N2:N1≈1E-

2 (panel (d)), the second mode accounts for between ≈35% (λ =384 nm) and ≈85% (λ =1020 nm) of the overall extinction.

Further, panel (d) shows that, in the OPC record, N2:N1 varied between 1E-3 and 1E-2 from ≈14–25 km. This variation in

number density results in the second mode contributing between 5% (λ =384 and N2:N1=1E-3) and ≈75% (λ =1020 and350

N2:N1=1E-2) of the overall extinction. Therefore, this simulation demonstrates how sensitive the SAGE extinction spectrum

can be to larger-particles even when these particles are outnumbered 1000:1. This results in a inevitable bias in not only our

PSD algorithm but all algorithms that use SAGE, and SAGE-like, data to infer PSD parameters. Indeed, it is for this reason

that the inferred PSD parameters in panels g–l of Fig. 12 were larger than those in panels a–f. We reiterate that the degree of

this bias is dependent on numerous factors and urge caution in trying to disentangle this information. Ultimately this adds an355

additional challenge to inferring PSD parameters from SAGE data, one that cannot be fully resolved without incorporation of

additional information from other instruments.

5 Evaluation of the practicality of bimodal solutions

The solution algorithm discussed above was expanded to accommodate a bimodal solution space. Inclusion of the second mode

is particularly intriguing in light of the discussion in Sec. 4.4.2. A complicating factor in moving to bimodal distributions is that360

number density cannot be completely ignored. Indeed, the dimensionality of the LUTs must be expanded to not only account

for the second rm and σ values, but also to account for the relative distribution of particles across the first and second modes.

This expands the number of PSD parameters that were used to create the LUTs from 2 (rm and σ) to 6 (r1,2, σ1,2, N1,2) as well

as an overall expansion in the size of the LUTs. For example, if the bimodal LUTs were constructed using the same limits and

resolutions that were used in the single-mode analysis then the LUT would expand from ≈41.6E6 values (≈160 MB at 32-bit365

precision) to more than 1.7E15 values (≈7 PB at 32-bit precision; this number assumes a single ratio of N1 to Ntotal). Therefore,

the bimodal LUT limits and resolutions were reduced to accommodate these issues as shown in Table 4. The limits of these

parameters were informed by the PSD parameters reported by the UWY OPC record (excluding data collected between 1-June

1991 and 1-Jun 1997 to remove the impact of the Pinatubo eruption). The OPC-based statistical profiles are presented in Fig.

14 for reference.370

Similar to the single mode sensitivity study (Sec. 4) the bimodal LUTs were tested to determine the feasibility of accurately

identifying all six PSD parameters (r1,2 , σ1,2 , N1,2 ). We recognize that the limitations on the range and resolution of PSD values
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Parameter Range/Values Resolution

r1 (nm) 10 – 1000 10

r2 (nm) 100 – 2000 10

σ1 1.1 – 1.8 0.01

σ2 1.01 – 1.6 0.01

(N1/Ntotal) 1, 0.999, 0.99, 0.975, 0.95, 0.90 NA

Extinction error (%) 5 NA

Table 4. Range and resolution of PSD parameters used in creating the bimodal LUTs.

Figure 14. Profiles of PSD parameters as reported in the University of Wyoming’s OPC record. Data collected between 1-June 1991 and

1-June 1997 were excluded to remove the influence of the 1991 eruption of Mt. Pinatubo. The shaded regions indicate the median ±MAD*.

in these LUTs inevitably influenced the accuracy of these results (see Sections 3.1.1 & 3.1.2 for discussion). Further, we

recognize that these limits do not cover the full range of PSD values reported within the UWY OPC record. Indeed, if the

shaded regions in Fig. 14 were expanded to cover 90% of the reported values instead of the median±MAD* then the range of375

values would have been substantially larger. Therefore, we explicitly state that, as constructed, this simulation is not designed

to be applicable to the full range of possible atmospheric conditions. Rather, we defined the boundaries of this model using

reasonable values that cover the majority of PSD values as reported in the UWY OPC record. Further, the intent of this bimodal

test is not to determine, necessarily, how accurately the inferred bimodal PSD values are, but it is to determine the stability of

operating within this expanded solution space.380

5.1 OPC case study

The OPC record was used to evaluate the performance of the bimodal solution algorithm in a manner similar to that discussed

in Sec. 4.4 and the results are shown in Fig. 12 panels (m–x). Panels (m–r) of Fig. 12 show the results when the pseudo-SAGE

extinction coefficients were calculated using only the first mode PSD parameters from the OPC data (i.e., tests the performance

when the atmospheric aerosol is single mode but the solution algorithm uses a bimodal LUT). Panels (s–x) of Fig. 12 show385

23

https://doi.org/10.5194/amt-2023-207
Preprint. Discussion started: 4 October 2023
c© Author(s) 2023. CC BY 4.0 License.



the results when the pseudo-SAGE extinction coefficients were calculated using both OPC modes (i.e., tests the performance

when both the atmospheric aerosol and the solution algorithm LUT are bimodal).

Here, it is observed that mismatching the number of modes in the LUT and atmospheric aerosol distribution had a modest

impact on the estimate of r1 and σ1, though r2 was underestimated by ≈90%. This resulted in a highly unreliable estimate

of the second mode’s number density (N2, panel (r)). While the corresponding SAD and VD estimates were underestimated,390

this resulted in an inferred re that was within ≈25% of the OPC value (on median) throughout the profile. Overall, this model

indicates that the bimodal solution algorithm provides reasonable estimates for r1 and re despite the pseudo-SAGE extinction

coefficients being built off aerosols from a single-mode distribution.

A stark change in performance was observed when the pseudo-SAGE extinction coefficients were created using both OPC

modes (panels s–x). Here, r1 was consistently overestimated by ≥25% throughout the profile while r2 fell much closer to the395

1:1 line. The overestimation of r1 is in agreement with the discussion in Sec. 4.4.2. While the overestimation of N2 is not as

severe as in panel (r), the algorithm continued to overestimate N2 by a factor of ≈5 and N1 is now underestimated throughout

much of the profile. This translates into an overall improvement of the SAD and VD parameters and re were within 25% above

17 km. Ultimately this demonstrates how the second mode dominates the performance of the solution algorithm.

5.2 Instability of bimodal solutions from a theoretical perspective400

The stability of the bimodal solutions was evaluated in a manner similar to that discussed in Sec. 4. Extinction coefficients were

extracted from the LUT for each combination of PSD parameters in Table 5 and then put into the bimodal solution algorithm

to calculate the inferred PSD parameters. It is worth noting that while the range and resolution of PSD values that were used to

extract extinction coefficients from the LUT (Table 5) were reduced, the overall range and resolution of the LUT used to find

solutions were consistent with values in Table 4.405

Parameter Range/Values Resolution

r1 (nm) 75 – 300 25

r2 (nm) 150 – 800 50

σ1 1.1 – 2.0 0.1

σ2 1.01 – 1.8 0.1

(N1/Ntotal) 1, 0.999, 0.99, 0.975, 0.95, 0.90 NA

Extinction error (%) 2.5 NA

Table 5. Range and resolution of target values that were fed into the bimodal solution algorithm for stability testing.

Visualization of the performance in bimodal space is challenging because of the number of variables. However, the stability

of these results can be elucidated by looking at summary statistics and comparing with the results of the single mode study.

These statistics are presented in Table 6.
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Single Mode Distribution Bimodal Distribution

Inferred r1

(±10 nm)

Target r1 Statistics

(P5, P25, P50, P75, P95)

Inferred r1

(±10 nm)

Target r1 Statistics

(P5, P25, P50, P75, P95)

Inferred r2

(±10 nm)

Target r2 Statistics

(P5, P25, P50, P75, P95)

80 (70, 70, 80, 80, 90) 80 (100, 100, 100, 137, 150) 720 (567, 662, 725, 787, 800)

100 (80, 90, 90, 100, 100) 100 (100, 100, 100, 100, 150) 650 (250, 600, 650, 700, 800)

120 (100, 110, 120, 120, 140) 120 (100, 100, 100, 100, 150) 655 (350, 600, 650, 712, 800)

140 (120, 130, 140, 140, 160) 140 (100, 150, 150, 150, 150) 710 (250, 600, 700, 750, 800)

160 (150, 150, 160, 160, 180) 160 (100, 150, 150, 150, 150) 660 (250, 500, 650, 700, 800)

180 (170, 170, 180, 180, 190) 180 (100, 150, 150, 150, 200) 540 (300, 387, 500, 600, 750)

200 (190, 190, 200, 200, 210) 200 (100, 150, 200, 200, 250) 600 (300, 500, 600, 700, 800)

220 (210, 210, 220, 220, 230) 220 (100, 150, 200, 250, 300∗) 565 (327, 450, 600, 700, 800)

240 (230, 230, 240, 240, 250) 240 (100, 200, 200, 250, 250) 630 (400, 500, 650, 750, 800)

260 (240, 250, 260, 260, 270) 260 (100, 150, 250, 250, 300∗) 600 (350, 450, 625, 750, 800)

280 (261, 270, 280, 280, 290) 280 (100, 200, 250, 300∗, 300∗) 630 (350, 500, 650, 750, 800)

300 (280, 290, 300, 300, 310) 300 (100, 200, 250, 300∗, 300∗) 645 (400, 550, 675, 750, 800)

320 (300, 310, 320, 320, 330) 320 (100, 100, 250, 300∗, 300∗) 510 (400, 450, 600, 700, 800)

340 (320, 330, 340, 340, 350) 340 (100, 100, 150, 300∗, 300∗) 440 (400, 450, 550, 650, 800)

360 (340, 350, 360, 360, 370) 360 (100, 100, 100, 300∗, 300∗) 505 (400, 450, 500, 700, 750)

380 (350, 370, 380, 380, 390) 380 (100, 100, 100, 225, 300∗) 580 (450, 450, 550, 700, 800)

400 (370, 390, 400, 400, 410) 400 (100, 100, 100, 100, 100) 435 (450, 450, 450, 550, 625)

420 (390, 410, 420, 420, 430) 420 (100, 100, 100, 100, 100) 430 (450, 450, 500, 500, 650)

440 (410, 430, 440, 450, 450) 440 (100, 100, 100, 100, 100) 620 (500, 500, 500, 600, 720)

460 (430, 450, 460, 470, 470) 460 (100, 100, 100, 100, 100) 560 (500, 500, 550, 550, 620)

480 (450, 470, 480, 490, 490) 480 (100, 100, 100, 100, 100) 450 (500, 500, 500, 550, 700)

500 (460, 490, 500, 500, 500) 500 (100, 100, 100, 100, 100) 740 (550, 550, 550, 600, 650)

Table 6. Mode radius solution percentiles for the single and bimodal distributions. The percentiles (Pi) indicate the range of target radii that

resulted in the indicated inferred radius. Asterisks indicate values that are limited by the range of target values in the model (see Table 5).

The uncertainty in k was fixed at 5%.
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Here, the data were binned according to the inferred r1 for both the single and bimodal solutions. To build this table we took,

for example, all PSD parameters that resulted in an inferred r1 of 100 nm and calculated percentile statistics (i.e., P5, P25, P50,410

P75, P95). Therefore, when the algorithm infers an r1 of 100 nm for a single mode distribution we are 90% confident that the

true (target) value is between 80 and 100 nm (this is in agreement with the results of Sec. 4). Indeed, throughout the “Single

Mode Distribution” column of Table 6 the inferred r1 and target r1 values were in good agreement (generally within ≈10%),

demonstrating the stability and accuracy of this method when solving for single mode parameters.

The bimodal solutions are presented in a similar manner but include details about the second mode. For example, it is415

possible to infer an r1 of 100 nm when the true (target) value of r1 ranges from 100–150 nm and when the true value of r2

ranges from 250–800 nm (the high degree of variability in the target r2 statistics is driven by the varying number density ratios).

Overall, the inferred r1 values are in good agreement with the median target values (i.e., the output matches the input) until

the inferred r1 exceeded 300 nm. As seen in Table 5 the biggest r1 value we used as input for the solution algorithm was 300

nm, so any inferred r1>300 nm should be unexpected. Further, it is interesting to note that in Table 6 the inferred r1 continued420

to increase even when the target radius remained small, especially as the inferred r1 approached 500 nm. This seemingly

unexpected result is due to the presence of larger particles within the second mode dominating the extinction (as discussed in

Sec. 3.1.1 and shown in Fig. 13) and thereby opening the solution space to nonsensical values. However, it is important to note

that while the irrationality of these results is obvious under controlled simulations, we would have no basis for rejecting these

results under real-world conditions. Therefore, we view this as a conclusive demonstration of potentially significant instability425

in the bimodal solution when the second mode’s particles are large and demonstrates the infeasibility of accurately inferring

bimodal PSD parameters from SAGE data.

5.3 Recommendations for bimodal solution space

The analysis presented in this section demonstrated that bimodal PSD parameters can be inferred from the SAGE extinction

spectra and a casual interpretation of Fig. 12 could lead one to conclude that the situation is hopeful. However, this subsection430

is presented to remove ambiguity on the interpretation of the bimodal evaluation.

First, moving to a bimodal solution space comes at an additional computational cost. Indeed, despite reducing the LUTs’

PSD ranges and resolutions, as compared to the single-mode LUTs, the overall runtime increased by more than 2 orders of

magnitude. Therefore, this raised an obvious question: are bimodal solutions worth the increased runtime? To address this the

reader is encouraged to note the similarity between panels g–l where single-mode PSD parameters were inferred and s–x where435

bimodal PSD parameters were inferred in Fig. 12. While the bimodal solutions tended to yield a narrower range of solutions

(i.e., the shaded regions are narrower in panels s–x), the overall similarity in the median profiles is striking. This indicates that

using a bimodal solution space did not significantly improve the overall accuracy of these solutions.

Second, we demonstrated that the second mode has a disproportionate impact on the first mode’s estimation. While the

overall influence of the second mode, and the corresponding statistics in Table 6 can be modulated by varying distribution440

widths, number densities, and composition (what if the second mode has a different composition than the first?), the overall

interpretation is clear: while the OPC analysis looks promising the theoretical evaluation in Table 6 demonstrates that there
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is not enough information within the SAGE extinction spectra to sufficiently constrain the solution space to accurately infer

bimodal PSD parameters. Based on these results we conclude that the cost of inferring bimodal PSD parameters is high and

the benefit is, at best, modest and recommend against using bimodal PSD solutions based solely on SAGE data.445

6 Application to SAGE data

Since this manuscript is concerned primarily with the algorithm development and performance we will not make an in-depth

scientific investigation of any particular event. Rather, herein we explain the details of the application of this algorithm to

the SAGE II and SAGE III/ISS missions and provide a high-level overview of the PSD parameters for these missions. The

intention here is to provide the reader with a general overview of the performance of this algorithm and the variability of the450

PSD parameters over the lifetime of these instruments. Having established the methodology, more targeted scientific analyses

will be the subject of subsequent publications.

6.1 SAGE II

The PSD algorithm was applied to data collected under the SAGE II mission using only the 520:1021 nm extinction ratio (i.e.,

condition #0 in Table 3) to infer single-mode lognormal distribution parameters. The 384 nm channel was excluded following455

the guidance of Damadeo et al. (2013) and the 448 nm channel was not included as it relatively close to the 525 nm channel

and did not significantly improve the performance. As shown above (i.e., Figs. 7 and 9) the accuracy of the inferred PSD

values is inversely proportional to the measurement uncertainty. Therefore, extinction coefficients with uncertainty >20% were

excluded from the analysis. Further, a simple cloud-filter was applied, following Thomason and Vernier (2013), by excluding

all extinction ratios ≤1.4.460

The reported k1020, median inferred PSD parameters, and the median inferred microphysical properties during the SAGE II

time period are presented in Figs. 15 and 16 (northern and southern hemispheres, respectively). Notable volcanic eruptions, as

defined in Table 7 are indicated with labels above panel (a) in both figures as well as vertical dashed lines within each panel.

Here, it is observed that the record was dominated by two major events: the 1982 eruption of El Chichón and the 1991 eruption

of Pinatubo. Both eruptions resulted in bimodal aerosol distributions (Knollenberg and Huffman, 1983; Oberbeck et al., 1983;465

Deshler et al., 1992, 1993, 2003), which means that the inferred PSD parameters will be heavily weighted toward the coarser

mode as discussed in Sec. 4.4. However, the general observation within these figures is that these eruptions led to overall larger

particles (including re), enhanced SAD, enhanced VD, and enhanced N.

The SAGE II v7.0 product files contained SAD and re estimates as described in Thomason et al. (2008) and Damadeo

et al. (2013). Thomason et al. (2008) provided a detailed discussion on the uncertainty in the inferred SAD values, which is470

generally within ±30% in the main aerosol layer but may have an overall range in excess of 200% under light aerosol loads.

The agreement between the current algorithm’s SAD and re products, as compared to the v7.0 products, is shown in Figure 17.

Data in Fig 17 were filtered using the same criteria as in Figs. 15 & 16. Here, panels (a) and (d) present normalized histograms

of the abundance of the v7.0 SAD and re products, respectively. Panels (c) and (f) present the relative abundance of the percent
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Figure 15. Extinction coefficient (k1020), median inferred PSD parameters, and the median inferred microphysical properties for SAGE II

data collected in the northern hemisphere. The data were filtered to remove extinction coefficients that had an uncertainty in excess of 20%

or were indicative of cloud contamination (i.e., k1020/k1020 ≤ 1.4).
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Figure 16. Same as Fig. 15, but for the southern hemisphere.
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Event Name Date Latitude

Nevado del Ruiz (Ne) November 1985 5◦S

Kelut (Ke) February 1990 9◦S

Pinatubo (Pi) June 1991 15◦N

Cerro Hudson (Ce) August 1991 46◦S

Rabaul (Rab) September 1994 4◦S

Ruang (Rn) September 2002 2◦S

Manam (Mn) January 2005 4◦S

Canadian pyroCb (Cw) August 2017 52◦N

Ambae (Am) July 2018 15◦S

Raikoke (Ra) June 2019 48◦N

Ulawun (Ul) June 2019 5◦S

La Soufriere (LS) April 2021 13◦N

Australian pyroCb (Aw) January 2020 27-35◦S

Hunga Tonga (HT) January 2022 20◦S

Table 7. Notable volcanic and pyroCb events during the SAGE II and SAGE III/ISS records. Table includes labels used to identify events in

Figs. 18 and 19.

difference between the current algorithm’s SAD and re estimates and the v7.0 values, respectively. Finally, panels (b) and475

(e) present scatter plots, color coded by k1020, of the percent difference between the 2 algorithms vs the v7.0 SAD and re,

respectively.

Two general observations are made within Fig. 17: 1. as k1020 increased so too did SAD and re, 2. as k1020 increased the

agreement between the 2 algorithms improved. Further, under enhanced aerosol load (e.g., k1020>1E-4 km-1) the majority of

the SAD and re estimates were within the ±30% uncertainties stated in Thomason et al. (2008). The histograms in Fig. 17480

show the relative distribution of these physical parameters as well as the percent difference. It is observed that more than half

of the SAD estimates were greater than 1 µm2 cm-3 (panel a) and the re had a broader range (panel d) with 4 modes at 180,

230, 260, and 300 nm.

Overall, the PSD estimates from the SAGE II period are reasonable and the SAD and re estimates agree with the v7.0

products within the stated uncertainty under enhanced conditions. While this does not provide definitive validation of this new485

algorithm this does demonstrate consistency between this new method and an established product that is currently in use within

the community and provides confidence in validity of this technique.

6.2 SAGE III/ISS

As discussed in Sec. 4, a combination of condition definitions were used for identifying the PSD parameters in the SAGE

III/ISS record. First, solutions were searched using condition #5 (i.e., all channels except those in the Chappuis band). There490
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Figure 17. Comparison between the SAD and re estimates from the current algorithm and those in the v7.0 SAGE II product. Data within

these panels were filtered using the same criteria used in Figs. 15 & 16.

are several reasons why this condition would fail to deliver valid solutions, all of which relate to the input extinction coeffi-

cients. For example, if the reported extinction for any channel is negative or a channel is saturated then the solution algorithm

cannot perform. In the case that a solution is not found using condition #5 the algorithm then excludes the 384 nm channel

(condition #6) and then makes another attempt to find solutions. The exclusion of the 384 nm channel is, of course, based on the

assumption that the failure of condition #5 was due to the 384 nm channel being either negative or saturated. Finally, in the case495

that condition #6 fails to find a solution the algorithm switches over to condition #15 (i.e., the third best performing condition

per Sec. 4, data not shown) and makes a final attempt to find the PSD solutions. If no solutions were found in condition #15

then no PSD parameters were provided for that particular spectrum. After finding solutions the data were filtered to remove the

influence of cloud contamination using the method of Kovilakam et al. (2023).

The results are shown in Figs. 18 and 19 for the northern and southern hemispheres, respectively, for the entire SAGE III/ISS500

record. The northern hemisphere was dominated by the 2017 Canadian wildfire and the 2019 eruption of Raikoke as well as

smaller eruptions (e.g., the 2021 eruption of La Soufriere) and transport from larger events that occurred in the southern hemi-

sphere (e.g., the 2022 eruption of Hunga Tonga). The southern hemisphere was influence by more events including transport

from the 2017 Canadian wildfire.

Both hemispheres showed a consistent pattern of smaller particles formed immediately after the smaller eruptions (i.e.,505

Ambae, Ulawun, La Soufriere) while the larger eruptions produced larger particles. This small particle formation was directly

correlated with increased number density (panel g) and inversely correlated with the distribution width (panel f). However, the

Raikoke and Hunga Tonga eruptions, as well as the major wildfire events, consistently produced larger particles with smaller
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distribution widths. While these events did not yield number densities comparable to the smaller events the number densities

remained elevated as compared to background conditions. These results are in agreement with previous studies (Thomason510

et al., 2021; Wrana et al., 2023).

6.2.1 Hunga Tonga case study

We now present a brief demonstration of the algorithm’s products in the aftermath of the 2022 eruption of Hunga Tonga. A

more thorough scientific evaluation will be the subject of a subsequent publication (in progress). Here, we take the opportunity

to finish the presentation of the statistics that are output from this method and do a cursory comparison to balloon-borne optical515

particle counter observations.

Monthly zonal median plots of the inferred mode radii are presented in Fig. 20 wherein it is observed that the main plume

contained particles that were >300 nm and this plume was centered near 10◦S and 24 km. The plume was transported predom-

inantly southward though some of the particles were caught in the natural northward circulation. While all particle sizes were

transported to lower altitudes as a product of the Brewer-Dobson circulation (especially outside tropical latitudes) the larger520

particles showed a disproportionately rapid descent, as compared to the smaller particles, due to differing deposition rates.

This is most readily seen in panel (e) of Fig. 20 where, regardless of latitude, we observed a partitioning between the largest

particles (>300 nm) and smaller particles (<300 nm). Here, the plume of largest particles were centered at ≈20 km near the

equator and descended to lower altitudes toward the higher latitudes. This is in contrast to the persistence of smaller particles

at higher altitudes, well past 25 km.525

The PSD estimates from an individual profile collected on 15-February 2022 are shown in Fig. 21. Before discussing the

content of this figure it is important to recall the method we used in inferring the PSD parameters (i.e., extinction coefficient

LUTs were used to identify all theoretical PSD parameters that yielded extinction ratios within the propagated uncertainty

of the SAGE III/ISS extinction ratios). This enabled us to provide a statistical representation of the PSD solution space on a

point-by-point basis, part of which is the overall spread in the solution space. This statistical representation is presented in Fig.530

21 with the spread in the solution space represented by the shaded regions.

Panel (a) of Fig. 21 contains the extinction coefficient profiles for 3 wavelengths and panel (g) contains the percent errors

of these coefficients. Panels (b) through (f) contain profiles of the inferred parameters with the shaded region indicating the

median ±MAD*. Panels (h) through (l) contain the 90% confidence interval (CI) relative to the median (vertical dashed lines

are guides to the eye and represent the ±10% and ±20% levels).535

Three distinct peaks were observed in the extinction profile at 18 km, 21.5 km, and 24 km, though the solution algorithm

failed to find any PSD parameters that yielded extinction ratios comparable to the SAGE III/ISS values below 19 km. Further,

the spread in solution space, due to increased extinction uncertainty (panel g) near 20 km resulted in less certain PSD estimates.

However, the reported uncertainty in the extinction coefficients at 24 km was smaller and resulted in a narrower range of PSD

parameter solutions. The estimated mode radius at 24 km was 345 nm ±20 nm and a distribution width (σ) of 1.3 ±0.05. We540

note that the inferred re value at 24 km (410 nm ±5 nm) is in good agreement with the estimate of 460 nm from data collected

by a Portable Optical Particle Spectrometer (Asher, 2023) as well as other recent independent estimates of re (Khaykin et al.,
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Figure 18. Extinction coefficient (1020 nm, panel a) and size distribution parameters (panels b-e) inferred over the entire SAGE III/ISS

record for the northern hemisphere.
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Figure 19. Same as Fig. 18, but for the southern hemisphere.
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Figure 20. Monthly zonal median radii in the months following the Hunga Tonga eruption.

2022; Legras et al., 2022; Duchamp et al., 2023). In summary, the variability in the extinction profiles correlates well with

variability in the PSD, SAD, VD, and re profiles.

The CI statistics are a key feature of this methodology (panels h through l) and provide guidance on the level of confidence545

of these estimates. For example, looking at the mode radius data at 24 km we conclude that 90% of the theoretical PSD

parameters that matched the SAGE III/ISS extinction ratios (within the bounds of the reported uncertainty) had a mode radius

and distribution width that were within 10% of the inferred median value. A similar statement can be made for the SAD, VD,

and re estimates as well. The utility of this method is that this CI estimation opens an opportunity for implementing not only

the PSD and microphysical products in chemistry and climate models, but this opens the opportunity for improved uncertainty550

estimates for the input parameters that drive these models as well as improved uncertainty estimates for the products that come

from these models.

7 Conclusions

We presented a methodology for inferring particle size distribution (PSD) parameters from SAGE extinction spectra. The nov-

elty of this methodology is in the statistical representation of the PSD solution space, which provides the community with the555

potential range of PSD and microphysical values as well as the corresponding confidence intervals. While the PSD solutions are

valuable for climate and chemistry modelling, the statistical information provides an additional level of information previously

not available. Indeed, this additional information allows end users to propagate these uncertainties through their respective

calculations and thereby improve the error assessment of their end products.

The accuracy of this method was evaluated in terms of both single mode and bimodal lognormal distributions as a function560

of extinction coefficient uncertainty. We demonstrated that the inferred single-mode PSD parameters were within ≈±25%

when the extinction error was small (Figs. 7 & 9). Further, we evaluated the impact that incorrect composition assumptions
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Figure 21. Extinction profiles (a), extinction percent error profiles (g), PSD profiles (b-f), and 90% confidence interval profiles (h-l). The

horizontal dashed line in panels (a, g) represents the tropopause altitude.

had on the single-mode PSD estimates (Figs. 10 & 11). A key result of this study is that while PSD parameters can be inferred

using extinction spectra from instruments such as SAGE these parameters cannot be represented by a single number (e.g., mean

or median). Rather, the extinction spectra, within the bounds of measurement uncertainty, can be reproduced by myriad PSD565

combinations and this variability must be reported as done here.

The PSD and microphysical property products were compared to the University of Wyoming’s OPC record. Overall the 2

records were in good agreement.

We studied the feasibility of obtaining bimodal solutions from the SAGE III/ISS spectra alone (Sec. 4.4) and used the

University of Wyoming’s OPC record as a case study to evaluate the accuracy of these results. While the bimodal solution570

algorithm returned PSD estimates that were in generally good agreement with the OPC record this came at the cost of signifi-

cantly increased computation time and with the caveat that the solution space was heavily biased toward coarse mode particles

(i.e., the algorithm tried to minimize r1 and maximize r2). In effect, the algorithm is forcing all of the finer-mode particles

into a regime that SAGE is insensitive to (e.g., ⪅150 nm per Fig. 2) so that the fine mode, in effect, could be ignored. Indeed,
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the coarse-mode particles dominated even when the fine-mode particles outnumbered them by more than 100:1. We made a575

detailed discussion regarding the physical reasoning behind this bias. Based on this analysis we concluded that the bimodal

solution space is too unstable to provide consistently reliable PSD estimates without incorporating an additional dataset.

PSD values for both the SAGE II and SAGE III/ISS data were obtained for the entire data record and the variability of these

parameters was demonstrated. Herein we showed that the SAGE II record was dominated by events that yielded large particles

throughout most of its record while the SAGE III/ISS record is composed of a mixture of events (volcanic and pyroCb) that580

resulted in both smaller and larger particles as discussed by Wrana et al. (2023). Our surface area density (SAD) and effective

radius (re) estimates for the SAGE II data were compared to the standard SAD and re products within the SAGE II v7.0 product.

While the v7.0 products and our products were within the specified uncertainties (i.e., ±30% under enhanced aerosol load and

±200% under background conditions per Thomason et al. (2008)) the overall agreement was better under enhanced conditions.
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